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Particle Adhesion to Drops

Boris Krasovitski
Department of Biomedical Engineering, Technion—Israel Institute of
Technology, Haifa, Israel

Abraham Marmur
Departments of Chemical Engineering and Biomedical Engineering,
Technion—Israel Institute of Technology, Haifa, Israel

The adhesion of spheroidal particles to spherical drops is calculated and discussed
in terms of an equilibrium-penetration index. The present study emphasizes the
case of particles that are sufficiently large to affect the drop volume upon pen-
etration. It is shown that the more elongated the particles, the steeper the depen-
dence of the penetration index on the contact angle. The effect of line tension on
nanoscale particles is considered. Positive line tensions increase the steepness
of the dependence of penetration index on contact angle whereas negative line
tensions decrease this dependence. In addition, the energy barrier caused by
positive line tensions is presented and discussed.
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INTRODUCTION

Particles adhere to liquid–fluid surfaces in a variety of situations
[1–8]. The flotation of particles at such surfaces is essential for some
separation processes [7] and is also used for characterization of par-
ticle wettability [6]. In addition, there is much (renewed) interest in
particle-stabilized emulsions [2]. Thus, understanding the interaction
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of particles with liquid–fluid interfaces, specifically the adhesion of
particles to drops, is of much interest.

The adhesion of particles to drops is a wetting phenomenon, which
depends on many parameters. Among them, the shape and size of the
particles play a key role in determining the extent of wetting. In most
practical situations, the shape of the particles may be too complex to
allow exact calculations. Therefore, spheroids have been used as model
particles [1]. In addition, the size and shape of the particles determine
the effect of line tension [1, 9]. Although the magnitude of line tension
is still controversial, it seems to have become clear that it is in the
range of 5� 10�11 to 10�8N. The effect of line tension on the contact
angle is meaningful only for very small particles, usually less than
102–103 molecular distances [9]. Thus, recent interest in nanoparticles
justifies the study of line-tension effects.

The objective of the present article is to discuss adhesion of particles
to drops over a wide range of size and shape. For simplicity, prolate
spheroids of various axis ratios are used for the calculations, with
their axis of revolution parallel to the penetration direction. For parti-
cles that are large relative to the drops, the change in drop size
because of the partial penetration of the particles has to be taken into
account. For particles that are sufficiently small (mostly in the nanos-
cale range), line tension has to be considered. This article adds to
recent studies [1] in treating relatively large particles, presenting
the results in terms of a penetration index, and discussing the energy
barrier caused by line tension.

THEORY

The system to be discussed is presented in Figure 1. It consists of a
spherical liquid drop (L) of radius R and volume V, and a solid particle
(S) having a shape of an ellipsoid of revolution (spheroid) with axes 2a
and 2b (axis of the revolution). The drop and the particle are sur-
rounded by a fluid (F). For simplicity in the calculations, the particle
is submerged in the drop in such a way that its axis of revolution is
directed to the drop center. The extent of submergence is determined
by the value of d, which is the distance between the centers of the
drop and particle. The distance between the drop center and the
plane of intersection of the drop and the particle is zi. For con-
venience, the following dimensionless variables and parameters are
introduced:

R � R

b
; a � a

b
; d � d

b
; zi �

zi

b
; V � V

b
3
:
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The dimensionless Gibbs energy of the system, G, is given by

G � G

rLFb
2
¼ �ASL cos hþ ALF þ sL ð1Þ

where G is the Gibbs energy of the system, rLF is the liquid–fluid
interfacial tension, h is the contact angle that the solid makes with
the liquid, ALF � ALF=b

2
, ASL � ASL=b

2
, ALF is the liquid–fluid interfa-

cial area, and ASL is the solid–liquid interfacial area. The dimension-
less line tension is defined by s � s=ðbrLFÞ, where s is the line tension
and L is the dimensionless length of the contact line (normalized with
respect to b). The dimensionless interfacial areas are given by the
following equations:

ALF ¼ 4pR2 � 2pR R� zið Þ; ð2Þ

where

zi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2a4 þ 1� a2ð Þ R2 þ a2d2 � a2

� �q
� a2d

1� a2ð Þ for a 6¼ 1 ð3aÞ

FIGURE 1 The particle-drop system.
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zi ¼
R2 þ d2 � 1

2d
for a ¼ 1 ð3bÞ

ASL ¼ pa
D

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
þ sin�1 nþ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p
þ sin�1 D

� �
for a 6¼ 1 ð4aÞ

where n � D zi � dð Þ; D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
, and

ASL ¼ 2p zi � dþ 1ð Þ for a ¼ 1: ð4bÞ

The equilibrium position of the particle is determined by minimizing
the Gibbs energy of the system:

dG

dd
¼ � _AASL cos hþ _AALF þ s _LL ¼ 0 ð5Þ

where _AA � dA=dd and _LL � dL=dd. Using Equations (2) and (4), one
gets

_AASL ¼ 2pa _zzi � 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
for a 6¼ 1; ð6aÞ

_AASL ¼ 2p _zzi � 1ð Þ for a ¼ 1; ð6bÞ

and

_AALF ¼ 2p 2R _RRþ _RRzi þR _zzi
� �

: ð7Þ

The derivative of the dimensionless contact line in the case of the
intersection between coaxial sphere and spheroid is given by

_LL ¼ 2p
R _RR� zi _zziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � z2i

q : ð8Þ

Equation (5) is based on the assumption that line tension is
constant for a given system. Actually, in contrast to surface tension,
line tension is not a constant. It implicitly depends on the contact
angle, and it also depends on the curvatures in the system [9, 10].
However, taking into account these effects makes the problem very
complicated, especially if the particles are not spherical. Therefore,
line tension is assumed here to be constant, and the results of the
calculations should be considered an approximate indication.
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The function _RR � dR=dd may be derived from the condition of mass
conservation of the liquid inside the drop, as follows:

V ¼ 4

3
pR3 � V1 � V2 ¼ const: ð9Þ

Here

V1 ¼ p
3
a2 2þ 3 zi � dð Þ � zi � dð Þ3

h i
ð10Þ

is the dimensionless volume of the submerged part of the particle
(normalized with respect to b

3
), and

V2 ¼ p
3
h2 2Rþ zið Þ ð11Þ

is the dimensionless volume of the ‘‘missing’’ spherical cap of the liquid
(also normalized with respect to b

3
).

Using Equations (9)–(11), one gets

_VV ¼ 4pR2 _RR� _VV1 � _VV2 ¼ 0; ð12Þ

_VV1 ¼ pa2 _zzi � 1ð Þ 1� zi � dð Þ2
h i

; ð13Þ

and

_VV2 ¼ p R� zið Þ½2R _RR� _zzi Rþ zið Þ�: ð14Þ
Differentiation of Equation (3) with respect to d gives

_zzi ¼
1

1� a2ð Þ
a4dþ 1� a2

� �
R _RRþ a2d

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2a4 þ 1� a2ð Þ R2 þ a2d2 � a2

� �q � a2

2
64

3
75 for a 6¼ 1

ð15aÞ
and

_zzi ¼
2dR _RRþ d2 � R2 þ 1

2d2
for a ¼ 1: ð15bÞ

There expressions may be represented in the form

_zzi ¼ E1
_RRþ E2; ð16Þ

where

E1 ¼
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2a4 þ 1� a2ð Þ R2 þ a2d2 � a2
� �q ð17Þ
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and

E2 ¼
a2

1� a2ð Þ
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2a4 þ 1� a2ð Þ R2 þ a2d2 � a2
� �q � 1

2
64

3
75 for a 6¼ 1;

ð18aÞ

E2 ¼ d2 � R2 þ 1

2d2
for a ¼ 1: ð18bÞ

Equation (12) may now be represented in the following form:

F1
_RRþ F2 _zzi þ F3 ¼ 0; ð19Þ

where

F1 ¼ 2R Rþ zið Þ; ð20Þ

F2 ¼ �a2 1� zi � dð Þ2
h i

þ R2 � z2i
� �

; ð21Þ

and

F3 ¼ a2 1� zi � dð Þ2
h i

: ð22Þ

Then, solving the system of Equations (16) and (19), one gets

_RR ¼ �F3 þ F2E2

F1 þ F2E1
: ð23Þ

Integrating the system of ordinary differential equations (5) (left-
side equality), (16), and (23), one gets the functions RðdÞ, zi(d), and
GðdÞ. Then, the value of dm that provides the minimum in G according
to Equation (5) may be found. Here and in the following, the subscript
m corresponds to the equilibrium position.

A penetration index, p, which characterizes the equilibrium extent
of penetration of a particle into the drop, may now be defined as

p ¼ 1

2
1þ Rm � dmð Þ: ð24Þ

Obviously, p ¼ 0 when the particle touches the drop and p ¼ 1 when
the particle fully penetrates into the drop.

RESULTS AND DISCUSSION

The minimum in Gibbs energy must correspond to the penetration
index, for which the local contact angle is the ideal one [11]. In the
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absence of line tension, this would correspond to the state for which
the local contact angle is the Young contact angle. In this case, these
equations could have been simplified and numerical integration could
have been avoided. However, when line tension is meaningful, its
value and effect on the contact angle depend on the geometry of the
contact line and the particle surface [11]. Then, numerical integration
becomes unavoidable. Therefore, all the results in the present study
have been attained by numerical integration. The Runge–Kutta
method was used for the integrations.

Figure 2 demonstrates the effect of particle shape on the equilibrium-
penetration index. It is clearly seen that as the particle becomes more
elongated (a becomes smaller), the penetration index approaches a
step function in its dependence on the contact angle. Thus, very long
spheroids either almost completely penetrate into the liquid (for contact
angles smaller than 90�) or almost completely remain in the fluid (for
contact angles greater than 90�). This is in agreement with qualita-
tive statements [8]. In contrast, the penetration index of spherical
particles (a ¼ 1) changes gradually with the contact angle.

As mentioned in the introduction, when the particles are suffi-
ciently large compared with the drop size, their effect on the actual
radius of the drop, for a given liquid volume, may not be negligible.
This, in turn, may affect the penetration index. As shown in
Figure 3, this is indeed the case, although the effect of the drop-to-
particle-radius ratio, R, is not a major one. As can be seen, this effect
practically disappears when R>�20.

FIGURE 2 Attachment of a spheroidal particle to a spherical drop, assuming
negligible line tension. Numbers near the curves indicate values of a.
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Figures 4 and 5 demonstrate the effect of positive line tension on
spherical and spheroidal particles, respectively. The value of line
tension in these figures is given in its dimensionless form:
s � s=ðbrLFÞ [see definitions following Equation (1)]. To better under-
stand the implications of the dimensionless line tensions used in these
figures, it should be noted that a dimensionless line tension of 0.1
would correspond to s ¼ 5� 10�11N, rLF ¼ 50mN=m, and b ¼ 10nm.
It should be noted that particles in this size range are prone to aggre-
gation; however, only single particles are discussed in the present
study. Aggregates may, in principle, be treated as larger particles with
a more complex shape. As mentioned, the assumption of a constant
line tension is a major simplification. However, the results may assist
in understanding the qualitative effect. It is clearly seen that a posi-
tive line tension has the same effect as elongating the particles: the
penetration index function become steeper as the value of line tension
increases. In the case of spheroidal particles shown in Figure 5, posi-
tive line tension makes the penetration-index function very close to a
step function. Figures 6 and 7 show the effect of negative line tension
on spherical and spheroidal particles, respectively. It is clear that such
values make the effect of the contact angle more gradual, even for
spheroidal particles.

FIGURE 3 The effect of drop to particle radius ratio on the attachment of a
spherical particle to a spherical drop. Numbers near the curves indicate the
values of dimensionless drop radius, R.
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When line tension is negligible, the Gibbs energy of the system
decreases as the particle penetrates the liquid–fluid interface on its
way to equilibrium at the lowest energy. However, when line tension
is meaningful in magnitude and positive, a maximum in the Gibbs
energy, Gmax, may exist. This is because the penetration of the particle

FIGURE 5 The effect of positive line tension on the attachment of a sphe-
roidal particle to a spherical drop. R ¼ 10, a ¼ 0.3. Numbers near the curves
indicate the values of the dimensionless line tension.

FIGURE 4 The effect of positive line tension on the attachment of a spherical
particle to a spherical drop. R ¼ 10, a ¼ 1. Numbers near the curves indicate
the values of the dimensionless line tension.
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into the liquid–fluid interface increases, at first, the length of the
contact line, thus increasing the energy associated with this line.
The difference between Gmax and the Gibbs energy when the particle
touches the drop is defined as the ‘‘energy barrier’’ for penetration,

FIGURE 6 The effect of negative line tension on the attachment of a spheri-
cal particle to a spherical drop. R ¼ 10, a ¼ 1. Numbers near the curves indi-
cate the values of the dimensionless line tension.

FIGURE 7 The effect of negative line tension on the attachment of a sphe-
roidal particle to a spherical drop. R ¼ 10, a ¼ 0.3. Numbers near the curves
indicate the values of the dimensionless line tension.
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Gb. Figure 8 demonstrates the dependence of the dimensionless energy
barrier, Gb ¼ Gb=ðrLFb

2Þ on the contact angle and on line tension for a
spherical particle. The dimensionless line tension values used in this
figure seem realistic for small particles of about 10nm in size, as men-
tioned previously. In general, for contact angles that are not too high,
the energy barrier tends to decrease with an increase in contact angle.
The higher the line tension, the less sensitive is the energy barrier
to the contact angle. To understand the practical implications of this
energy barrier, it should be compared with the thermal energy of a par-
ticle, kT, where k is Boltzmann’s constant (1.38� 10�23 J=K) and T is
the absolute temperature. At room temperature, for a particle size of
10 nm, R ¼ 10, rLF ¼ 72mN=m, T ¼ 293K, and h ¼ 90�, the energy
barrier is of the order of (103kT). Thus, for nanoparticles, not only
may the line tension be meaningful in determining the penetration
index, but it may be important in determining a barrier for penetration.

CONCLUSIONS

The main conclusions of the present study can be summarized as
follows:

1. The adhesion of particles to liquid drops can be quantified in terms
of a penetration index, which refers to the equilibrium state of the

FIGURE 8 Dependence of the energy barrier (Gb) on the contact angle for a
spherical particle. R ¼ 10, a ¼ 1. Numbers near the curves indicate the values
of the dimensionless line tension.
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particle; it is defined as 0 when the particle touches the drop and
1 when the particle fully penetrates into the drop.

2. For the cases of prolate spheroidal particles, which are oriented
with their axis of revolution parallel to the direction of penetration,
the penetration index approaches a step function when the particle
becomes very long and when the (positive) value of line tension is
large.

3. A positive line tension may lead to a meaningful energy barrier
that may prevent the penetration of particles into a drop, even
when it is thermodynamically favored.
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